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Abstract

The purpose of this paper is to explore the use of several

model potential energy functions in order to try better to under-

stand the nature of the forces which operate between simple monatomic

cations and the molecules of solvent which surround them. This work

builds upon and extends a recently reported initial treatment. In

that report, the potential energy was modelled as the sum of an

exponential (Born-type) repulsion and an ionic-dipolar attraction.

In this paper we consider composite functions which consist variously

of an exponential form of repulsion or an inverse R-12 repulsion,

and attractions which are expressed in terms of the basic ionic-

dipolar terms together with additional terms which depend upon the

polarizabilities of the ion and the solvent. No more than two

adjustable parameters are used. The force constants for the far

infrared-active vibrations of the caged ions are known. With the use

of the equilibrium condition for the cage of solvent, the values of

the parameters can be determined. Although all of the functions

examined show the effect of the polarizability of the ion on the force

constants, a potential which consists of independent R-6 and R-12

terms together with other experimentally fixed ionic-dipolar terms

shows most clearly the effect of polarizability. We also find,

however, that the consideration of ionic polarizability alone is

inadequate to explain in a simple manner the variation of the force

constants for the alkali metal cations.



-2-

1. Introduction

It is generalIy assumed that for most cations in solution,

and even for those for which no effect ive covalent lv honded assoc i a -

tions form, a discrete and persistent structure of solvent molecules

accompany a centrally located ion. One can Propose significant,

discrete structures which may contribute to chemical reactivity or

transport processes which take place in solution. Thus, for a

variety of reasons there is a need to try to understand the nature

of the forces which hint solvent to ion in such an impermanent

environment as that of a solution.

It is the purpose of this paper to present several forms of

potential energy function for the simple solvated alkali metal

cation. An ultimate objective of this kind of investigation

should he to specify an accurate form of the function. No claim is

even hinted that we are anvwhere near that goal. nn the contrary,

here only short-ranged, intermediate--but necessary--objectives are

set. Specifically, we fit parameters in these model potential

functions with available spectroscopic data. At this stage it is

necessary to see if it is possible to choose one form rather than another

as heinp, more "accurate" with respect to phvsical interpretation.

As we amply illustrate in this paper, the stage hs not been reachcd

where it is possible to assay the numerical accuracy of av particular

form of potential energy function. For that assay, different

experiments with new sets of data are required.

IAs we id icat ed in a recent paper, the sol vated al kalIi metal
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cations are ideal subjects to study because of the relatively

uncomplicated nature of the electronic structure of the centrally

located ions. Thus, one suspects, the predominant forces of inter-

action are electrostatic with strong repulsions entering only

on very close approach between the ion and its solvent. The

process of modelling the appropriate potential energy function is

thereby simplified. Experimental evidence in the form of the
2

far infrared-active vibrations of the alkali cations definitely

suggests that the ions occupy some form of cage of solvent and that

the cage endures for a sufficient length of time for the vibrations

to be observed.

In the previous paper, 1 we modelled the interactions between

the centrally located ion in a cage of solvent and the molecules

of solvent which make up the cage as the simple sum of an ion-dipole

interaction and an exponential, Born-type repulsion. An equilibrium

condition for the single ion-solvent couple was used to fix values

for the adjustable parameters in the Born repulsion. Most importantly,

we showed that because the ion oscillates about a position of

equilibrium which also is the centre of symmetry, the force constant

does not depend directly upon any electrostatic ionic-dipolar terms.

The contribution of the electrostatic interaction between the ion and

a regular, crystalline cage of dipoles vanishes for the force

constant by reasons of symmetry. The form of the force constant

which we obtained indicated a direct dependence on the forces of

repulsion which operate.

We also showed in the previous paper1 that the force constants

for the vibrations of the alkali cations in their cages of solvent

range from a high value for lithium to a low value for potassium.
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However, from potassium to caesium, the force constants again inc rcas,.

We indicated that this effect could be attributed to the increasing

polarizability of the electrons in the ions as the ,roup is

transcended from lithium to cacsium. Our arguments in that pre-

liminarv report, however, were only qualitative. An aim of this

paper is to attempt to make the dependence of the force constant

on the polarizability of an ion explicit and quantitative. We

want to see if the trend in the force constants for the group of

the alkali metal cations follows the trend in the increase in the

observed polarizabilities.

We consider the following potential energy functions. First,

we re-examine the composite function which consists in part of the

Born exponential type of repulsion. Several years ago, Woodcock3

considered a generalized form of exponential-type of repulsion

in connection with a study of the alkali halide solids. AlVoodcock-

form of repulsion is used in the second example function. An advantage

of the Woodcock generalized repulsion is the fact that the "hardness"

of the repulsion can be adjusted easily. Finally, we consider

composite functions which are constructed of Lennard-Jones and Mic

(or decoupled Lennard-Jones) potentials. We will demonstrate

that the use of the Lennard-Jones potential in a Stockmayer-form

of potential leads to pathological conditions. In particular,

one is not free to choose values of the radii of solvation for the

ions at will. The use of the Mie potential, on the other hand,

shows a remarkable R-6 repulsion for the interaction of the ion

with the solvent both for lithium and sodium.

Before we present the analyses of the various potential forms

in detail, it is necessary to consider some procedural and mathematical
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pre Ii im ina ry operat ions. These operations are out in ed in the next

section.

2. Method of approach

In this paper we consider the same systems as we considered

1
previously, viz., the solvated alkali metal cations. As indicated

above, here we consider more complicated, and one presumes, more

realistic, potential energy functions. These potential energy

functions are constructed as the sums of terms: repulsions and

attractions. In particular, we consider various ionic-dipolar

attractions, dipolar repulsions between molecules of solvent in

the first shell of solvation, dipolar-induced dipolar attractions

between solvent molecules and between the solvent and the ion, and

finally in some cases, induced dipole-dipolar interactions between

the ion and the solvent. In all cases, the polarizability of the

solvent, as found with the use of the Lorenz-Lorentz 4 equation, is

used. In some of the cases, the polarizability of the ion is used;

the values are those given in Smyth's book. S The parameters which are

adjustable and require fitting to ex perimental data are contained

in the exponential repulsions or the Lennard-.Jones (or Mie) components.

Throughout, we allow for only two adjustable parameters. These

two parameters can be fitted to values of the force constants for

the far infrared-active vibrations of the ion. The expression for

the force constant and the condition for equilibrium yield two

expressions to use to solve for the two parameters.

For the solvated ionic systems, there are only limited un-
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ambiguous experimental data available which can be used to determine

the parameters in any model potential energy functions. Indeed,

as long as the question of the coordination number of the solvent

about any one of the alkali metal cations remains open, there are

no data which are certain. We assume in this paper that the

coordination number of solvent for lithium, sodium, and potassium

is four. The coordination number of solvent for rubidium and caesium

is most likely to be six. It is then possible to establish the

values for the force constants for the far infrared-active vibrations

of these ions.

Data which are used in the following section to establish

values of the adjustable parameters within each model potential

energy function are given in Table 1. The values of the radii

of solvation are those used previously 1 and are found with the

use of the Stearn-tFyring 6 model as applied by Abraham and Liszi.7

The polarizability of the solvent (taken to he dimethvl sulphoxide,

DMSO) is found with the use of the lorenz-Lorentz 4 equation

V = 4rTa/3 (2.1)

n 2+2 m

in which n is the index of refraction, Vm is the molar volume, and

r is the polarizability.
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a. Formulae for the force constant

As we showed in the previous paper, 1 when considering the far

infrared-active vibrations of a solvated ion, it is essential to

develop expressions for the force constants in an appropriate form.

The vibrations are known experimentallv to involve the oscillation

of the ion about a position of enuilibrium at the centre of a

cace of solvent. We assume the cage is regular and crystalline.

Thus, the position of enuilibrium is also the centre of symmetry.

It is necessary, therefore, to obtain the force constant as the

second order coefficient in a Taylor series expansion about the

centre of symmetry.

For the electrostatic interaction between the ion and its

solvent dipoles, the Carlson-Rushbrooke 8 expansion can be used. For

cages of solvent which are distributed about the ion with cubic

symmetry, these electrostatic terms do not contribute to the magnitude

of the force constant. For other potential functions an integral form

of the Taylor series has proved useful. This form was presented

to second order in the previous paper. Recently, we have generalized

the result to anv order.9,10 The essential formulae are listed helow.

Frequently, one encounters potential energy functions which

do not easily yield Fourier transforms. The need for the Fourier

transform of a function is essential in evaluating the integral

form of the force constant--see below. When the Fourier transform

cannot be found, vet the function is otherwise well-behaved,

it is necessary to revert to a differential form. Therefore, we

also present below a differential form which is useful in evaluitinQ
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the force constant associated with the Wookcock generall i ed exponen -

tial form.

The force constant for the vibration of an ion about its

equilibrium position at the centre of a cape of solvent is obtained

as follows. The formula for the second order contribution to the

Taylor series is

1 r 2  q/-7 L '(-i) ( ' 2
I(r'VR)2G(R) = vT- -A P (r.,ITR 22

7- -R 2 T

where

I 2 (R) 1 dk k f(k)j (kl, 2.5)

and jn (x) is the spherical Bessel function of the first kind. l

In eqn (2.2) P (x) is the Legendre polynomial. 1 1 The argument r

of the Legendre polynomial is the scalar product of the

unit vectors r and R. The vector R is directed from the molecule

of solvent to the centre of symmetry and the vector r expresses

an excursion away from that point. The function f(k) is defined
by1 , 9

f(k) = (4i)3/ 2  dr r 2 C(r)j0(kr) (2.4)
0

when C(r) is a scalar function. The coefficient A, has two values

1/3 and 2/3 according as t = 01 or 2.

For a system of solvation which is rogular and crystalline

in either a tetrahedral or octahedral sense, it is easily shown

that the the 9 = 2 terms vanish when summed over the sources.
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Thus, the contribution to the force constant from an individual

term in the potential, G(r) , is

k= cV4-1 2 0 (R0 )

c dk k4 f(k)jo(kRO) (2. 5)
0

where c is the coordination number for the cage of solvent.

If the function ,(r) is the exponential Born repulsion

exp = B exp[-(R-Ro)/p] (2.6)

then this term will contribute

ck _ cB (1 - 2r/Ro) (2.7)
exp 302

to the total force constant. On the other hand, for a term in

the potential of the form R- m , a contribution of the form

ck - m(m-1) (2.8)km 3Rm+2

3Ro

is found.
9

Equation (2.4) defines the radial component of the Fourier

transform of a function G(r). As indicated, frequently one encounters

well-behaved functions which nevertheless fail to yield easily

analytical expressions for f(k). In some instances, although it

is possible to find an analytical form for f(k), it is not possible



easily to find the integral (2.3). On the other hand, such functions

may yield readily to differential operators. One function which

satisfies this classification is the Woodcock generalized exponential

repulsion 3a

(R) = BR-mexp[-(Rn-R")/pn]. (2.9)

We now develop the differential form for the force constant term

(2.S). The complete expression for the second order term in the
1,9

Taylor series is given as

_2

t2 (r,R) = r4 7 - o0 (R) + :P (r-R)I 2  (R) (2.10)

for a function

C(r) = /T- Yoo(r)F(r)

(2.11)

in which Y00(r) is the zeroth-order spherical harmonic function.

The problem is to convert 12 0(R) and 1 2 2 (R) to differential forms.

First, for 12 0 (R) we write from the definition of the integral,

eqn (2.3)

12 0 (R) 1 dk klf(k)j 0 (kR)

2 22fdk k f(k)jo(kR) (2.12)
(2Tr) 3 DR2 o
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Into the integral on the second line of eqn (2.1) we substitute

the definition of f(k). Changing the order of integration gives

F dk k2 f(k)jo(kR) = (47T) 3/210 dk k 2 j 0 (kR)f dr r 2 F(r)j 0(kr)

0 0

- 2  dr r3/2F(r)(r-R)
R 0

= 41T5/ 2 F(R) (2.13)

where 6(r) is the Dirac delta function. Substitution of this result

into the equation for 12 0 (R) gives

1 2 0 (R) 2- R (2.14)

For the evaluation of the second term 12 2 (R), we use the

lowering operator for the spherical Bessel function twice:11

Jn+t(x) = [n/x - d/dx]j n(x). (2.15)

Thus, by means of an operation similar to the above to get (2.14), we

find

12 2 (R)= 1 F(R). (2.16)
f4-i 3R R2  MIR

The collected result is

t2 (R) = 1 2L-f lj+ R2(rR+ - 11 (2.17)

T 3R iR iR 2" 2 R IR . ... .. .
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The form of (2.17) is the same as (2.10) as far as an) angular

dependencies are concerned. Therefore, for collections of sources

which are distributed with cubic symmetry, the I1 (r.R) terms vanish

when summed over all the sources. The application of the result

to the Woodcock generalized exponential potential, eqn (2.9),

yields

- k C --B(m(m-i) - n(n-2n+l)(RO/p) nl + n 2 (R 0 /o) 2n (218)

The contribut ion to the f orce constant f or a Born exponent ial

repulsion, eqn (2.7), follows immediately from (2. 18) when in 0

and n - I.

b. Electrostatic interactions

The interactions between the ion and the solvent dipoles and

between the dipoles of the solvent themselves will have a constant

representation in each of the potential energy functions. The

inclusion or omission of induced dipolar interactions for the ion

varies with the type of repulsion considered; the lennard-Jones or

Mie potentials, for example, implicitly include the induced dipolar

interaction. Here, we consider a general form to be used through-

out the disucssion in the next section.
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4From Bottcher we can write the potential energy for the

interaction between two id'nticaZ dipoles of solvent as

I 1 "12 3A 2  ( 1 S) ( 11~2 "S

qdd A, 3 1 -'A4 s 5

- I * ., 32} (2.19)s 3 A I s 3 AI4

in which

A = I - n'12( 3/ 8 )
3  (2.20)

n 56

and p is the magnitude of the dipole moment. The nolarizability

of the solvent is (. Finally, s is the distance between the centres

of gravity of the dipoles.

The contribution from the interaction between the ion and

a dipole is

( .b.. pi = -i 3 ( Is'P.3 2) Ze 2C S

_id A ~Z - 1 -s + ~. R (2.21)R3  ZR KZe 2AR0id Ra 2R' 1z Is AA R 2A4R

in which R is the distance between the ion and the centre of gravityN
of the dipole. The polarizability of the ion is .. Now, in A

one of the polarizabilities is that of the ion and the other is that

of the solvent, ',t.

It is not (ifficult to show that for the distances applicable

to the solvated ionic species, the An all are essentially unity.

nnIn the following,, we will use the simpler form-, in which all An1 = 1.

The distance R between the ion and the dipole is the parameter

of interest. Therefore, it is necessary to express the distance
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s between tihe 1o1leculIes of solvent in terms of R. :or the regular

tetrahedron and octahedron, this is a simple process. Furthermore,

it is possible to relate the orientations of the dipoles to the

unit vector R. for the i molecule. If we assume an orientation

which yields the optimum interaction between the ion and the solvent

dipole, then the dipole vectors can be written as

J12  2iR2

for a pair of dipoles, and

s = IRI-R2I.

For any pair of dipoles,

12 ' 11 2  = P 2Cos()

= V12 R1 *R2

and

01-S = PRl'(P 2 -R 1 ) = VR(cosO-1)

12'S = - 1R(cosO-l).

In calculating the total contribution to the potential enery

function due to the interactions between all the dipoles in a

tetrahedron, we multiply the basic result for a single pair by

(i.e., n(n-l)/2 for n identical species). On the other band, for

the octahedron, we multiply the basic result by 12 (i.e., n(n-l)/2

-3 which eliminates the three pairs which are separated by the

centrally located ion).

The specific forms for the dipole-dipole and ion-dipole

energies are the following. For the four-coordinated tetrahedron,

dd = 10(3/8)3/2 1 [1 - (3/8) - /R' ]  (2.2 )dd
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and

( e2 i 2
4 i 4 4Zep 2 aSe2 8 (2 22

idR 2  R R6

For the six-coordinated octahedron,

6 - 3 3 2 (2.24)
dd 2TR

and (

oSe2 ji 2

= - - 3 12 _ (2.25)
idR 2 R 6

c. The total potential energy

The total potential energy function is obtained by adding

a repulsion to the sum of Cdd and c4id' Thus, the total potential

function is written as

cJ = c + cD + co . (2.2(i)

For some models, the repulsion is combined with a van der Waals

attraction, as is the case for the Lennard-Jones potential. When it

is clear that a van der Waals attraction between the ion and solvent

is implicit in C r, then specific account of the interaction is

omitted from eqn (2.23) and (2.26), (and hence in (2.26)), viz.,

2

2c
R

I A
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is omitted.

Mechanical equilibrium is specified in terms of Ro, the

equilibrium value of the radius of solvation, by

UL'(Ro) = 0. (2.27)

Thus, we can write

a e2
cD + 2 + 2 s  + 12i + c (
rep 3 7 R d 0

in which

(4 dd)1 30(3/8)3/2 -11 2(3/8)3/2' l (2.29)

or

-6Odd) - / 52 (2.30)

and

c -DI B m + n(R0/p)n  (2.31)
W _m R/Ifl

for the Woodcock Reneralized exponential repulsion.

Fqn (2.28) yields an equation in the adjustable parameters.

The complete expression for the force constant yields another equation.

Thus, with the assumption of the value of the solvation radius

at equilibrium and the value of the force constant for the far

infrared-active vibrations, it is possible to determine the
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values of the adjustable parameters for a particular ion. This

process is carried out in the next section.

3. Analvses with specific functional forms

The analyvses to he considered convientlv divide into those

which depend upon exponential forms for the repulsion, and those

which depend upon inverse powers.

t
I. Exponential forms

The simple Born exponential repulsion is contained as a

limit in the Woodcock generalized exponential repulsion. Thus,

to begin, we consider the Woodcock form.

Following the prescription laid down in the last section,

we proceed here to determine the values of the adjustable parameters.

From the equilibrium condition, eqn (2.28), we can write the

fol lowing

-~ (1 2 ~ A 12I 2 + cJd

B (m + n x ) = a 2 s
_ 1 I 2 _ ) IR 3 Ro 5R7 c +dd

= p (3.1lc

in which we have defined x as

x = (Ro/p) n . (.2)

The expression for the force constant can be expressed as
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B[m(m-1) n(n-2m+l)x + n2x 2]

3R l + 202+ 2

JJ

=Qc (3.3)

These two equations can be solved for B and x. The elimination of

B yields

(n2X) + - [n 1 [+2n4m4m+1P + 2(n+l)P Q
2nP 2nP c c C

c

+ Qj2l/2 (3.4)

The value of p is

p =RO/x1 / (3.5)

Finally, the value of B is found to be

B =P c/(m + nx). (3.6)

The Born repulsion follows from the Woodcock form with m = 0

and n =1. Values of B and p for the Born potential are given in

Table 2.

Woodcock14 in studying the alkali halides, assumed a value

of m-4. The value of n ranged from 1 to 6. We assume values of

m = 4 and n = 6. The results, values of B and p for the solvated

alkali cations, are given in Table 3.
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it. Inverse powers

ip to this point we have used forms for the potential which

depend upon two parameters within the repulsion. It is useful and

instructive to shift attention from these exponential forms in order

to consider another common form of interaction, the R 12 repulsion.

When this form of repulsion is combined with an R- 6 attraction as

SM = AIR12 - B/R 6  (3.7)

we have an example of the Mie potential. 12 On the other hand, these

two terms can be combined as

LJ 41)[ (ouR) 12 - (C/R) 61 3. s

which is a Lennard-.Jones potential. The quantity o is a distance

for which the potential vanishes. For our purposes, it is more

convenient to use (3.8) in the form

4)LJ = (p/R) [(p/R}6 - 21 3.9

t = -1).

When eqn (3.7) or (3.9) is combined with other terms to give a

potential of the form

2RcU(R) c~e LP c-S + c ( .0
R 2 2R 4  dd + (M or J

the quantities A and B or c and p are parameters which

are to be determined with the use of the experimental data.

.. .. ,, III .. .. .. . I . . . . .M I.. .
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To begin, we examine the use of (3.10) with the Lennard-Jones

component. This form of potential is analogous to the Stockmayer

form of hybrid potential which is used in the analysis of polar

14molecules. As we illustrate momentarily, the use of this form

of potential with the values of the quantities RO, as, and P in

Table 1 leads to a mathematical pathology; an intrinsically positive

definite quantity is determined to be negative.

The complete force constant for the potential with a Lennard-

Jones component is

0, e
2

k = 4c- - (p/RO)6 [ll(p/Ro) 6 - 5] - 2c s - -  3.11
R0 RO

Define the quantity x as

x = (p/Ro) 6 . 3.12

Then, with the use of U'(Ro) 0, we find

Ex(x - 1) = A

Ex(llx - 5) = B

with

A Zep + +s Ro (c,(
6R 6R4 12c dd ) '

and

B 1 Rk + s 3. 15)
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The pair of equations (3.13) are solved easily for x and E:

RA B (3.1x = i1-A-- T. {

Here, the pathology appears. For lithium, or any of the cat ions

of group 1, we find x < 0. By definition, however, eqn (3.12), x

must be greater than zero. Hence, the contradiction suggests either

(1) the use of the Lennard-Jones component is inappropriate or (2)

the values of R0 used are inappropriate. We return to consider this

question briefly in the next section.

The Mie potential is a decoupled form of Lennard-Jones potential.

The adjustable parameters A and B can be determined easily as follows.

The complete force constant is

2

k = 2cRS . .

t.et

a =A/0 '

b = B/Rg 5. 10)

Then, we find the eq(uations

6a 13b X
(3 . I 9

22a - 5b = Y

with

=ep + s + LO c

aR

and



Y _ 2k + s

Thus,

a =X/3)

b = (Y lIX/3).

The results of the application of these equations to the alkali

metal cations are given in Table 4. It is remarkable to note that

for both lithium and sodium, the value of B found is zoaactioc. Thus,

for both of these ions we find an R-b 6,,il-ion in addition to the

R-1 2 repulsion when c = 4.

4. Discussion

For some time now, the problem of the determination of the

energies of solvation has commanded much attention. 15- 17 These

efforts amply show that electrostatic contributions predominate.

Some calculations have been carried out which incorporate an

accounting for repulsive interactions. 10,17 As one expects, the

repulsion is only a small contribution to the total energy of solvation.

Thus, one would anticipate a lack of enthusiism for the pursuit of

the most accurate form of the repulsion, if the goal were only to

determine the energies of solvation.

As 4e have shown, certain phenomena, principally the far infra-

red spectra, depend sensitively upon the repulsion. In this paper

we also have shown that these vibrations depend substantially upon

,~~~~~~~~~~~~ .... .. ,... .........-. .. . ...



van der" Waals and induced dipolar attractions which operate between

the ion and the molecules of solvent. The energies of solvation are

thermodynamic quantities which are characteristic of a state of

equilibrium. On the other hand, the vibrational spectra of the

solvated ions reflect the importance of term.s in the potential energy'

function which influence time-dependent phenomena. Thus, although

the repulsion and the induced dipolar and van der Waals interactions

may play smaller roles in the determination of the energy of solvation,

their role can become much enhanced for rate and transport processes.

It is possible, of course, to generate many different forms

for the repulsion in the total potential. In the absence of any

other measurable quantity, there is little upon which to base a

choice of one form over another. Even though the repulsion and

van der Waals attraction contribute but a fraction to the total

energy of solvation, the magnitude of ihe contribution for one

form as compared to another can be diagnostic.

In the previous section we considered three model potential

energy functions in which only the repulsion contained adjustable

parameters. In contrast, for the Mie potential, we determined

coefficients for both the repulsion and the van der Waals terms.

Thus, it is necessary to compare only functions which have the

same overall form.

Table 5 lists the values of the repulsions and the Mie potential

evaluated with the equilibrium radius of solvation. The Born and

Woodcock terms all can be compared one to another.

It is clear that there is little to distinguish the Born from the

Woodcock 4/6 potentials for the ions lithium, sodium and potassium.

Ai
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lie Born repuls ion decreases monoton ical ly. This is true also lor

the Woodcock potential. However, for the Woodcock 4/6 potential

we see that changing from 4- to 6-coordination at Rh shows a dranatic

change in the repulsion. This change is not true of the Born

potential. As Muirhead-Gould and Laidler 17 have shown, there is

a distinct difference in the trend in the energies of solvation

upon changing from 4- to 6-coordination. This trend is matched by

the experimental points. However, it is difficult to say at this

point whether the trend depends significantly upon changes in the

repulsion or not.

The Mic potential deserves special attention. First of all,

the parameters A and B apply respectively to a formal repulsion and

an attraction which operates between the ion and the molecules of

solvent. In contrast, in the other models of the potential function,

all the adjustable parameters apply to one part of the complete

function, the repulsion. The use of the Mie potential, therefore,

suggests that the representation is more physically "truthful" than

is the case for the other more restricted models. There is no

compelling reason to expect that the experimentally measured (or

more accurately, estimated5 ) polarizabilities for the ions should

apply to the van der Waals interaction between the ion and the

solvent. The results with the use of the Mie potential seem to

indicate that the experimental polarizabilities of the ions--as

used for example with the exponential forms in section 3, part I--

may indeed not apply.
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The values for the contribution of the Nile potential to the

total energy of solvation are listed in Table 5. These values

represent the combination of the repulsion and the attraction.

It is clear that the total effect of both terms is a net repulsion

at the equilibrium radius of solvation. The fact that there is a

trend downward from lithium to sodium and back upward from sodium

to caesium is accounted for bv referring to the changing role of

the R term as shown in Table 4. The ionic polarizabilities are

given in Table 1. For lithium and sodium, these quantities are

small. Thus, any induced dipolar, van der Waals attraction between

the ion and a molecule of solvent will be extremely small. For

example, for lithium we calculate this contribution to be 77 .1 mole-1.

It would come as no surprise therefore to find small, but positive,

values of B for lithium and sodium. It is somewhat surprising to

find in fact that the polarizability has vanished (in terms of this

model) and that the van der Waals attraction is replaced by a

repulsion. Quantum mechanical calculations1 8 to determine the

nature of the interaction between the lithium cation and the

formaldehyde molecule indicated that the lithium'cation does not

participate in any covalent delocalization of electrons in either

the ls or 2s shells. That work1 8 concluded that lithium behaves

essentially as a hard, charged sphere. In light of this finding,
-6

the role reversal of the R term looses its surprisal value.

Lithium, and to a much lesser degree sodium, is simply a very

classical, charged particle.

It is of interest to see if there is any observable relation-
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ship between the values for the B-factors which are determined by

matching the potential to the experimental quantities and the values

of the polarizabilities (listed in Table 1). We have seen above

that for lithium and sodium there can be no correspondence. The

fact that a negative value of B is found both for lithium and

sodium cannot support any interpretation which involves the

polarizability of the ion (viz., a van der Waals type of inter-

action). For the ions of potassium, rubidium, and caesium we find

positive values for the B-quantities, as given in Table 4.

At first glance, it does appear that there is some correspondence

between the B-values and the experimental values of the polariza-

bilities. We can assume that B is related to the polarizability

of the ion and the dipole mcment of the solvent by

B = f icx 2  (4.1)

The quantity f is a constant of proportionality. Table ( lists

the values of fq. with f = 1. All the values listed are very1

large, much larger than the experimental polarizabilities. If we

assume that these values are large because f should not be unity, then

a constant value of f should emerge when we examine the ratio

Q c/ai . "hese ratios are also included in Table 6. As is
i(calc) i(exp)'

readily seen, there is no consistancy. Lastly, we list the values

of Ai(n) /i(n-l) for both the calculated and the experimental

quantities. There is no similarity here either.

We conclude that for the Mie potential at least, there is the

indication that the trends in the polarizabilities of the ions

are roughly followed. However, because the effective polarizabilities
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are much larger than the experimental quantities, there appear to

he operating additional quantal effects [which would involve

electronic overlap] which are not adequately accounted for in terms

of the simplicity of the potential energy functions used.

The results obtaincd for the Mie potential suggest that the

patllogy observed with the use of the Lennard-Jones component is

intrinsically associated with the form and not with the values of

the parameters used. The Lennard-Jones potential, when used by

itself, adequately represents the balance between attraction and

repulsion with two parameters, an energy and a distance. When used

in conjunction with a strong interaction such as an electrostatic

ionic-dipolar interaction, it may not be possible for the parametcrs

rationally to adjust in a physically reasonable sense. Thus, we

suspect that it is more appropriate to use forms for the potential

which consist of independently variable repulsions and attractions.

We cannot claim to have unearthed the accurate form of the

potential energy function which operates to describe ionic solvation.

However, we claim to have accented some factors which have

received less attention than they warrant, namely, the roles played

by the repulsion and dispersion forces. The question must therefore

be, what is the accurate form of the potential. A considerable

body of work in related areas 19 ,20 suggests that accurate potential

energy functions can be constructed in terms of individual atomic

and electronic (bonding and lone pair) contributions from all the

atoms in the molecular aggregate. Scheraga's efforts,1 9 in particular,

have been notably successful in a programme to parameterize a

large number of interactions. A feature of Scheraga's work which

seems also to be applicable to the solvated ion is the use of a
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three-parameter potential for each "electron". The electrons in

Scheraga's model are negative point charges which are not

necessarily located at the same positions as the actual quantal

electronic charge distributions. The potential Scheraa 19 uses for

the interaction between electrons is the Buckingham exp-6 form.

Dispersive interactions are associated only with the electrons.

The parameters are then fixed by means of least squares fits to all

avaliable experimental data and to some quantum mechanical calcula-

tions in regions where strong repulsions operate.
-12

tUnless one is content to use the R or similar form of

repulsion in the potential energy, then the use of an exponential

form for the repulsion requires two adjustable parameters.

As we have seen with the Mie potential, it is useful to be able

to deternine the coefficient of the van der Waals term by fitting

to experimental data as well. Thus, to be able to fit both the

repulsions and the dispersive forces requires a minimum of three

adjustable parameters.

The use of the exponential form for the repulsion ha.; a long

tradition. And, its use seems to be more closely related to actual

quantum mechanically calculated repulsions than is the case for the

R 12 repulsion.72 Thus, we suspect that the accurate form of the

potential energy function for a solvated ionic system which will

emerge will be one which faithfully reproduces the vibrational

spectra of the ion in the cage of solvent, and the cage itself.

Moreover, the function ought to be able to predict vibrational

contributions to the activation of rate and transport processes.

It seems at this time that a hybrid form which uses the exponential

repulsion together with the van der Waals attraction for part of
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the potential will be successful
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Table 1: Experimental data for use iii determining potential energy

functions

Solvent: dimethyl sulphoxide: n = 1.4783 (Na D-line), p 4.3 debye

° 3  (a)ot= 8A s

0 -1 (b)(c) (03 (d)
Ion R0 (A) v(cm 1)(b) k(dyii cm-1 )(c) Xi (A5 )

4-coord 6-coord

Li + 3.24 429±2 74307 74894 0.08

Na+ 3.56 198±3 49497 50652 0.20

K+  3.79 153±3 47837 49672 0.87

Rb+  3.91 123±3 60121 64785 1.43

Cs+ 4.12 110±4 66506 73888 2.50

(a) Refractive index and dipole moment: Merck Index (Merck Publishing

Co., Raway N.J., 1976); polarizability from refractive index

and eqn (2.6).

(b) From Maxey and Popov, see ref. 2

(c) Calculated from Maxey and Popov's data 2 for 4- and 6-coordination,

see ref. 1.

(d) From Smyth, ref. 6.



'Fable 2: Model potential with Born exp~onenltial repulsion

Ion Bx10 12 egPI 8cm

4-coord 6-coord 4-coord 6-coord

Li + 0.51 0.59 0.26 0.32

Na+ 0 .38 0.43 0.27 0.34

K +0.27 0.30 0.24 0.30

Rb +0.18 0.20 0.18 0.22?

Cs+ 0.12 0.13 0.15 0.17

TFable 3: Model potential with Woodcock 4/6 exponential repulsion

[oil Bxl()4 erg-c C4PXlO cm

4-coord 6-coord 4-coord 6-coord

Li + 59.57 176.53 3.02 3.38

Na+ 63.18 186.91 3.29 3.67

5 9.38 172.41 3.24 3.77

Rb + 49.16 142.05 3.40 3.72

Cs+ 42.62 122.40 3.46 3.77



Table 4: Model potential with Mie components

Ion AxlO'0 2erg cm 2  BxlOaerg cm6

4-coord 6-coord 4-coord 6-coord

.+-

Li 0.68 0.49 -0.75 -0.56

Na+  0.69 1.23 -0.01 0.56

K+  4.43 3.20 9.57 6.99

Rb+  9.71 7.22 31.88 24.22

Cs+  23.96 18.20 71.23 55.25

energy
Table 5: Differences in rep as a contribution to the free/of cationic

solvation

kJ mole

Ion Born Woodcock Mie

Li+  30.71 32.55 30.88

Na+  22.89 23.68 10.04

K+  16.28 17.91 29.04

Rb+  12.06 36.61 31.21

Cs+ 7.82 25.61 41.09



Table 6: Effective polarizabilities from B = ai2

Ion ti(calc) (A') ii(n)/'i(n-l) (a calc /exp

K+  52 60
2.52(1 .64J

Rb 131 92
2.28(1.75)

Cs+ 299 120

(a) Parenthetic values are listed for the experimental quantities.

Hprp . V ' * i~rtitv f t.'. ion in tho sense of increasing

atomic number.
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